Months after an electric ute disappeared from Ram's new-model plans, the company has announced hydrogen fuel-cell power for one of its large pick-ups. Ram has revealed plans to introduce a heavy-duty pick-up with hydrogen fuel-cell technology by the end of the year. In a recent interview with German publication Welt Am Sonntag, Jean-Michel Billig, head of hydrogen for Stellantis – the parent company for 14 car brands, including Jeep, Dodge, and Ram – said there were plans to bring the hydrogen-powered pick-up to market, with production set to start in 2024.

Read More

For the first time, global warming has exceeded 1.5C across an entire year, according to the EU's climate service. World leaders promised in 2015 to try to limit the long-term temperature rise to 1.5C, which is seen as crucial to help avoid the most damaging impacts. This first year-long breach doesn't break that landmark Paris agreement, but it does bring the world closer to doing so in the long-term.

Urgent action to cut carbon emissions can still slow warming, scientists say. "This far exceeds anything that is acceptable," Prof Sir Bob Watson, a former chair of the UN's climate body, told the BBC Radio 4's Today Programme.

Read More

Hydrogen cars are a zero-emission, environmentally responsible choice for sustainable transportation. The automotive industry, a cornerstone of modern transportation, finds itself at a pivotal juncture marked by a profound transformation. In recent years, there has been a seismic shift in the industry's priorities, driven by a growing recognition of the urgent need to address the environmental concerns associated with conventional fossil-fuel-powered vehicles.

Read More

California is marching ahead with firm rules now in place for both light-duty and medium/heavy-duty vehicles to transition to zero emission stock by 2045. The State is requiring that all new vehicles sold from 2035 onward be “zero-emission vehicles” (ZEVs)—battery electric, plug-in hybrid, or hydrogen-powered fuel-cell vehicles.

Read More

A huge experiment to produce electricity using enhanced geothermal energy is taking place underground in Utah. The United States Department of Energy (DOE) is funding an experimental pilot project drilling well over a mile deep into the Earth’s crust to access a continuous heat source for clean energy production. While the technology is in its infancy and there are questions about whether enhanced geothermal could ever be cost-competitive with other forms of clean energy production, the DOE is convinced that it’s a good enough idea to spend hundreds of millions of dollars on.

Read More

Lawmakers in some states have been laying the groundwork to add geothermal power to the electrical grid and pump underground heat into buildings. Now, a technological breakthrough could dramatically expand those ambitions—and perhaps unleash a new wave of policies to tap into geothermal sources.

Read More

 Amongst the many common facts about Iceland (Björk, Chess in Reykjavik, and Viking Sagas), many know the island’s nickname, “The Land of Fire and Ice.” Beautiful landscapes draw tourists to volcanos and geysers, contributing to an internationally renowned clean energy model that derives 99% of power from clean energy through a combination of geothermal and hydropower sources.

Read More

The Hydrogen-electric vehicle revolution is being driven by advances in fuel cell technology, governmental policies, and incentives. 

As the global conversation around climate change and environmental sustainability continues to evolve, zero-emission vehicles such as hydrogen electric vehicles offer an increasingly viable option for those seeking to minimize their carbon footprints on the road. 

Read More

Verde Hydrogen, a new US based Hydrogen Technology company has announced significant enhancements to its existing Electrolyzer Technology stack.

The Enhancements include new cell and bipolar plate design architecture with FEA analysis and test validation. This new technology has been validated in our most recent 5MW (world's largest single stack containerized system) equipment testing and passed 3rd party certification.

Read More

A drilling rig unveiled by researchers at the University of Oklahoma could dramatically change how the world sources its energy. The research team at the University's Mewbourne School of Petroleum and Geological Engineering plans to use the rig to tap into geothermal vents below the Earth's surface for an unlimited energy supply, a local media report said.

Read More

Lesser Known Than Some of Its Renewable Energy Cousins, Geothermal Energy Is Now on the Rise Thanks to Its Ability To Provide 24/7 Power, Heat, Cooling, Critical Minerals, and More.

Geothermal energy — literally “heat from the Earth” — may be hard to see, but thanks to increasing public interest and outreach it is not hidden anymore.

Read More

When new economic development director Chris Sadayasu first heard Hawaii had made it to the second round of a competition to land federal Department of Energy grants totaling $7 billion to build hydrogen fuel production facilities across the U.S., Sadayasu said he was thrilled.

“We have the opportunity to make a huge difference throughout the world,” he said. “It makes total sense for us to go full guns forward on this.”

Read More

Deep geothermal technology can harness the heat stored beneath the Earth’s crust to make abundant zero emissions energy. Imagine, if you will, a decommissioned coal generating station sitting cold and dark. It has a direct connection to the grid, but no electrons flow because burning coal destroys the environment. But wait! What if, by some alchemy, some magic, a supply of superheated steam that is the correct temperature and pressure to make those old turbines spin again were available? And what if that steam was heated without any carbon emissions at all by the Earth’s own geothermal energy 12 miles below the surface?

Read More

New technologies would allow geothermal plants to be built in places where Earth’s heat is farther from the surface. 

A group of startups and researchers are developing technologies to expand the output of geothermal energy.

Geothermal plants produce steam from underground reservoirs of hot, porous rocks saturated with water, and channel it into electricity-making turbines or pipes that heat buildings. Although the energy is virtually free of carbon emissions, its adoption has been limited because drilling gets more expensive and more difficult as it goes deeper.

Read More

A team of researchers from the National University of Singapore (NUS) have made a serendipitous scientific discovery that could potentially revolutionize the way water is broken down to release hydrogen gas—an element crucial to many industrial processes.

The team, led by Associate Professor Xue Jun Min, Dr. Wang Xiaopeng and Dr. Vincent Lee Wee Siang from the Department of Materials Science and Engineering under the NUS College of Design and Engineering (NUS CDE), found that light can trigger a new mechanism in a catalytic material used extensively in water electrolysis, where water is broken down into hydrogen and oxygen. The result is a more energy-efficient method of obtaining hydrogen.

Read More

The Atlantic meridional overturning circulation (AMOC), a system of ocean currents that carry warm water from the tropics into the North Atlantic and transport cold water from the northern to the southern hemisphere, is a fundamental mechanism for the regulation of Earth's climate. The conveyor belt has collapsed in the past owing to natural factors. The most recent collapse played a key role in the last deglaciation. AMOC is now threatened by global warming, scientists have shown, and a new study has discovered the sequence of past breakdown events.

Read More

Automakers, industries, and governments are betting on hydrogen again. Will it work this time? 

Between the battery electrics, plug-in hybrids, and radar-festooned self-driving cars on the streets here in San Francisco, the slick red Toyota Mirai doesn’t turn many heads.

That’s despite it being one of the most technologically advanced cars in the world and one of the rarest. Since it went on sale in 2015, Toyota has sold only about 10,000 of the sedans in the United States (out of a total of approximately 290 million registered cars in the country). Yet it easily blends in with traffic.

Read More

A team of researchers from Princeton University claims that enhanced geothermal systems (EGS) could enable up to five terawatts of power generation in the U.S. alone. This is huge because, currently, the total amount of electricity produced annually in the country from all the sources stands at around one terawatt only. 

Geothermal energy is the heat that is naturally produced in the interior parts of the planet including the Earth’s crust.

Read More

 

Researchers in Australia have been able to use trace amounts of liquid platinum to create cheap and highly efficient chemical reactions at low temperatures, opening a pathway to dramatic emissions reductions in crucial industries.

When combined with liquid gallium, the amounts of platinum required are small enough to significantly extend the earth's reserves of this valuable metal, while potentially offering more sustainable solutions for CO2 reduction, ammonia synthesis in fertilizer production, and green fuel cell creation, together with many other possible applications in chemical industries.

Read More

TOKYO, March 8 (Reuters) – Kawasaki Heavy Industries (KHI) and other Japan-based firms said on Tuesday that a pilot project to transport hydrogen produced from brown coal in Australia to Japan in the world’s first liquefied hydrogen tanker had proven technically feasible.

While hydrogen is widely touted as a fuel of the future with zero carbon emissions, it requires intensive energy input, with renewables to produce “green hydrogen.” Critics say emissions from brown coal derived hydrogen are twice that of natural gas.

Read More

Australia’s first commercial shipment of liquid hydrogen (LH2) will head to Japan aboard the Suiso Frontier, the world’s first LH2 carrier, which was welcomed Down Under today by the nation’s prime minister, Scott Morrison.

Read More

TOKYO, Dec 24 (Reuters) - The world's first liquefied hydrogen carrier left Japan on Friday to pick up its first cargo in Australia, with a return to Japan expected around late February, Kawasaki Heavy Industries Ltd (7012.T) said. The A$500 million ($362 million) pilot project, led by Japan's Kawasaki and backed by the Japanese and Australian governments, was originally scheduled to ship its first cargo of hydrogen extracted from brown coal in Australia in the spring.

Read More

Four new pilot plants funded by the US infrastructure bill could help expand the range of the “forgotten renewable.” There’s enough heat flowing from inside the earth to meet total global energy demand twice over. But harnessing it requires drilling deep underground and transforming that heat into a usable form of energy. That’s difficult and expensive, which is why geothermal power—sometimes called the forgotten renewable—makes up only about 0.3% of electricity generation worldwide. 

Read More

With its large crater lake of turquoise water, plumes of smoke and sulphurous bubbling of mud and gases, the Krafla volcano is one of Iceland's most awe-inspiring natural wonders.

Here, in the country's northeast, a team of international researchers is preparing to drill two kilometres (1.2 miles) into the heart of the volcano, a Jules Verne-like project aimed at creating the world's first underground magma observatory.

Read More

Hydrogen Optimized Inc., the Owen Sound-based developer of green hydrogen technology, announced this week it achieved a milestone for its RuggedCell hydrogen electrolysis process.

Last Thursday, the company “achieved a breakthrough in developing the world’s largest green hydrogen production systems with the successful demonstration of its high-current water electrolysis technology,” the company announced Tuesday.

Read More

A global collaboration, led by researchers from UNSW, has shown how liquid gallium can be used to help achieve the important goal of net zero carbon emissions.

Engineers from UNSW have helped to discover a cheap new way to capture and convert CO2 greenhouse emissions using liquid metal.

The process can be done at room temperature and uses liquid gallium to convert the carbon dioxide into oxygen and a high-value solid carbon product that can later be used in batteries, or in construction, or aircraft manufacturing.

Read More

Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production.

Typically, scientists have been using precious metal catalysts, such as platinum, to accelerate the reaction to break water into hydrogen and oxygen. Now Curtin research has found that adding nickel and cobalt to cheaper, previously ineffective catalysts enhances their performance, which lowers the energy required to split the water and increases the yield of hydrogen.

Read  More

Researchers at the University of Central Florida have designed for the first time a nanoscale material that can efficiently split seawater into oxygen and a clean energy fuel — hydrogen.

The material offers the high performance and stability needed for industrial-scale electrolysis, which could produce a clean energy fuel from seawater.

Hydrogen fuel derived from the sea could be an abundant and sustainable alternative to fossil fuels, but the potential power source has been limited by technical challenges, including how to practically harvest it.

Read More

H2 engine meets all of the eligibility criteria set by the EU for zero CO2 emission

Next step toward carbon-neutral drive solutions, including in the off-highway segment

Cologne, August 12, 2021 – DEUTZ launches the TCG 7.8 H2, the company’s first hydrogen engine. The drive, which meets all of the eligibility criteria set by the EU for zero CO2 emission engines, is a further addition to the company’s portfolio of low-emission and zero-emission drive systems.

Read More

Alberta partnership plans to make green hydrogen from geothermal energy. Meager Creek near Pemberton has long been known as one of B.C.’s best potential geothermal energy assets, but developers have poured millions down drill holes over the years, only to walk away. But a new Alberta company thinks that producing green hydrogen from geothermal power may make the economics work.


Read More

A surprise announcement at this year's UN General Assembly has transformed the politics of cutting carbon, says the BBC's chief environment correspondent, Justin Rowlatt. As the meeting of the so-called "global parliament" comes to an end, he asks whether it might just signal the beginning of a global rush to decarbonise.

You probably missed the most important announcement on tackling climate change in years.

It was made at the UN General Assembly.

Read More

Roughly 1 billion cars and trucks zoom about the world's roadways. Only a few run on hydrogen. This could change after a breakthrough achieved by researchers at the University of Copenhagen. The breakthrough? A new catalyst that can be used to produce cheaper and far more sustainable hydrogen powered vehicles.

Hydrogen vehicles are a rare sight. This is partly because they rely on a large amount of platinum to serve as a catalyst in their fuel cells—about 50 grams. Typically, vehicles only need about five grams of this rare and precious material. Indeed, only 100 tons of platinum are mined annually, in South Africa.

Read More

A thin coating of the 2-D nanomaterial hexagonal boron nitride is the key ingredient in a cost-effective technology developed by Rice University engineers for desalinating industrial-strength brine.

More than 1.8 billion people live in countries where fresh water is scarce. In many arid regions, seawater or salty groundwater is plentiful but costly to desalinate. In addition, many industries pay high disposal costs for wastewater with high salt concentrations that cannot be treated using conventional technologies. Reverse osmosis, the most common desalination technology, requires greater and greater pressure as the salt content of water increases and cannot be used to treat water that is extremely salty, or hypersaline.

Read More